climate
observed
 Home  Observed Warming  Observed Anthropogenic  Observed Effects

Food Production (21 Papers)

Shortlist Attribution Region SubCategory Year # Citations Cite As DOI Key Quote
Anthropogenic Peru Hunter Gatherers2010 74(Bury et al., 2010)https://doi.org/10.1007/s10584-010-9870-1Glaciers in the Cordillera Blanca, Peru, are undergoing rapid retreat, in large part due to climate change...Physical observations of the Yanamarey glacier show acceleration in frontal retreat at a rate of 8 m decade-1 since 1970...Hydrological and hydrochemical analyses document a possible transformation of stream flow over the past decade as the seasonal storage capacity of the glacier has degraded...which is increasing human vulnerability in the watershed.
Warming Africa (Central) Fisheries2008 14(Descy and Sarmento, 2008)https://doi.org/10.1608/FRJ-1.1.4We present information indicating that phytoplankton composition in lakes Tanganyika and Kivu may reflect recent changes as a result of global warming or species introduction.
Warming Denmark Crops2011 48(Kristensen et al., 2011)https://doi.org/10.1017/S0021859610000675Data on grain yield from field trials on winter wheat under conventional farming, harvested between 1992 and 2008, were combined with daily weather data available for 44 grids covering Denmark...The agroclimatic index for summer temperature showed the strongest effect causing lower yields with increasing temperature
Warming Global Crops2007 653(Lobell and Field, 2007)https://doi.org/10.1088/1748-9326/2/1/014002For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002
Warming Global Crops2011 1121Top (Lobell et al., 2011)https://doi.org/10.1126/science.1204531Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends
Warming Zimbabwe Fisheries2011 19(Ndebele-Murisa et al., 2011)https://doi.org/10.1080/0035919X.2011.600352Temperatures around the Kariba area have been rising since 1964; with the maximum range increasing at a faster rate than the minimum temperatures. Kapenta fish production has decreased significantly (R 2 =0.85, P≤0.05) since 1974 at an average rate of 24.19 metric tons per year...both climate (maximum temperature in particular) and nutrients, which are influenced by water levels, are the primary determinants of Lake Kariba's Kapenta production
Anthropogenic Philippines Crops2004 818Top (Peng et al., 2004)https://doi.org/10.1073/pnas.0403720101We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature...Grain yield declined by 10% for each 1 C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
Warming Global Fisheries2004 488Top (Atkinson et al, 2004)https://doi.org/10.1038/nature02996Krill support commercial fisheries...we have combined all available scientific net sampling data from 1926 to 2003...the productive southwest Atlantic sector contains >50% of Southern Ocean krill stocks, but here their density has declined since the 1970s...summer krill densities correlate positively with sea-ice extent the previous winter.
Warming China Crops2009 103(You et al., 2009)https://doi.org/10.1016/j.agrformet.2008.12.0...Here we use a 1979-2000 Chinese crop-specific panel dataset to investigate the climate impact on Chinese wheat yield growth...Rising temperature over the past two decades accounts for a 4.5% decline in wheat yields in China
Warming Australia Crops2017 40(Hochman et al., 2017)https://doi.org/10.1111/gcb.13604We show that wheat yields in Australia have stalled since 1990 and investigate the extent to which climate trends account for this observation...water-limited yield potential declined by 27% over a 26 year period from 1990 to 2015. We attribute this decline to reduced rainfall and to rising temperatures.
Temporal Global Crops2016 477Top (Lesk et al., 2016)https://doi.org/10.1038/nature16467Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%...Furthermore, the results highlight ~7% greater production damage from more recent droughts.
Warming China Crops2018 8(Zhang and Hu, 2018)https://doi.org/10.1007/s00704-018-2469-6The corn growing season had a drying trend during 1981-2009 in the whole study region, and this trend reach 90% confidence level over half of the region...drought is becoming serious under global warming. There is a positive correlation between corn yield losses and drought hazards.
Warming China Crops2015 7(Zhang et al., 2015)https://doi.org/10.1007/s13351-015-4083-1The results indicate that a significant warming-drying trend existed in the northern agro-pastural ecotone of China from 1980 to 2009, and this trend significantly decreased crop (spring wheat, naked oat, and potato) yields. Furthermore, the yield decreased by 16.2%-8.4% with a 1 C increase in maximum temperature and decreased by 6.6% - 11.8% with a 10% decrease in precipitation
Warming Thailand Crops2018 26(Prabnakorn t al., 2018)https://doi.org/10.1016/j.scitotenv.2017.11.1...In this paper, we investigate climatic conditions of the past 30 years (1984-2013) and assess the impacts of the recent climate trends on rice yields in the Mun River Basin in northeast Thailand...Our results indicate that the total yield losses due to past climate trends are rather low, in the range of < 50 kg/ha per decade (3% of actual average yields). In general, increasing trends in minimum and maximum temperatures lead to modest yield losses.
Warming Global Crops2019 21Top (Ray et al., 2019)https://doi.org/10.1371/journal.pone.0217148Crop statistics were compiled from 1974-2013 for ten crops across ~20,000 political units globally...this is the first observational global study reporting the impact of current climate change on the yields of the top ten global crops...among the top three global cereals, recent yields have decreased for rice (-0.3% or ~-1.6 million tons (MT) annually) and wheat (-0.9% or ~-5.0 MT annually)...we found that crop yields across Europe, Sub-Saharan Africa and Australia had in general decreased because of climate change, though exceptions are present. Similar variations are seen in other crops and regions all over the world...recent climate change has likely reduced overall consumable food calories in these ten crops by ~1%.
Warming Global Fisheries2020 457Top (Boyce, Lewis and Worm, 2010)https://doi.org/10.1038/nature09268Phytoplankton account for approximately half the production of organic matter on Earth. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of ?1% of the global median per year...long-term declining trends are related to increasing sea surface temperatures.
Warming Lake Tanganyika Fisheries2007 278(O?Reilly et al., 2003)https://doi.org/10.1038/nature01833Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. In parallel with regional warming patterns since the beginning of the twentieth century...primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields.
Warming North Sea Fisheries2005 1237Top (Perry et al., 2005)https://doi.org/10.1126/science.1111322We show that the distributions of both exploited and nonexploited North Sea fishes have responded markedly to recent increases in sea temperature, with nearly two-thirds of species shifting in mean latitude or depth or both over 25 years...species with shifting distributions have faster life cycles and smaller body sizes than nonshifting species
Temporal Africa Crops2014 28(Shi and Tao, 2014)https://doi.org/10.1007/s12571-014-0370-4Databases of maize yields and climate variables in the maize growing seasons were used to assess the vulnerability of African maize yields to climate change and variability with different levels of management at country scale between 1961 and 2010...the negative impacts of increasing temperature and decreasing precipitation and SPEI on maize yields progressively increased at the whole continent scale over the time period studied.
Warming China Crops20200(Bai & Xiao, 2020)https://doi.org/10.1007/s00704-020-03182-8Based on the observed data from 51 agro-meteorological stations across China during 1981-2010...the results indicated that climate change during the past three decades had a negative impact on rice growth and development.
Warming United States Crops20200(Eck et al., 2020)https://doi.org/10.1016/j.agrformet.2020.1080...In the southeastern United States...detrended county-level yield data (1981-2018) were analyzed...surface crops in the region suffer considerable declines as a result of higher than normal maximum temperatures during the growing season...although drought conditions result in negative departures from expected yield, the findings of this study highlight that excess moisture in the latter part of the growing season (Sep-Oct) can be equally damaging.

Select all results