Home  Observed Warming  Observed Anthropogenic  Observed Effects

For papers with global or multiregional effects, click here


Attribution Region Category Year Cite As DOI Key Quote
Warming Global Cholera2012(Vezzulli et al., 2012) showed that during the last half century, ubiquitous marine bacteria of the Vibrio genus, including Vibrio cholerae, increased in dominance...increased sea surface temperature explained 45% of the variance in Vibrio data, supporting the view that ocean warming is favouring the spread of vibrios and may be the cause of the globally increasing trend in their associated diseases.
Warming Global Economic Impacts2012(Dell et al., 2012) temperatures substantially reduce economic growth in poor countries...higher temperatures may reduce growth rates, not just the level of output...higher temperatures have wide-ranging effects, reducing agricultural output, industrial output, and political stability
Warming Global Crops2007(Lobell and Field, 2007) wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002
Warming Global Crops2011(Lobell et al., 2011) that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends
Warming Global Fisheries2004(Atkinson et al, 2004) support commercial fisheries...we have combined all available scientific net sampling data from 1926 to 2003...the productive southwest Atlantic sector contains >50% of Southern Ocean krill stocks, but here their density has declined since the 1970s...summer krill densities correlate positively with sea-ice extent the previous winter.
Warming Global Extreme Precipitation2013(Westra et al., 2013) study investigates the presence of trends in annual maximum daily precipitation time series obtained from a global dataset of 8326 high-quality land-based observing stations...from 1900 to 2009...statistically significant increasing trends can be detected at the global scale, with close to two-thirds of stations showing increases...there is a statistically significant association with globally averaged near-surface temperature.
Warming Global Hurricanes2006(Hoyos et al., 2006) results show that the trend of increasing numbers of category 4 and 5 hurricanes for the period 1970-2004 is directly linked to the trend in sea-surface temperature
Anthropogenic Atlantic Ocean Hurricanes2006(Mann and Emanuel, 2006) a formal statistical analysis to separate the estimated influences of anthropogenic climate change from possible natural cyclical influences, this article presents results indicating that anthropogenic factors are likely responsible for long-term trends in tropical Atlantic warmth and tropical cyclone activity
Temporal Global Hurricanes2005(Webster et al., 2005) in the strongest categories (4 + 5) have almost doubled in number (50 per pentad in the 1970s to near 90 per pentad during the past decade) and in proportion (from around 20% to around 35% during the same period)...We conclude that global data indicate a 30-year trend toward more frequent and intense hurricanes, corroborated by the results of the recent regional assessment
Warming Global Hurricanes2005(Emanuel, 2005) define an index of the potential destructiveness of hurricanes based on the total dissipation of power, integrated over the lifetime of the cyclone, and show that this index has increased markedly since the mid-1970s...I find that the record of net hurricane power dissipation is highly correlated with tropical sea surface temperature
Warming Global Drought2011(Dai, 2011) article reviews recent literature on drought of the last millennium, followed by an update on global aridity changes from 1950 to 2008...recent warming has increased atmospheric moisture demand and likely altered atmospheric circulation patterns, both contributing to the drying
Warming Global Reduced Streamflow2009(Dai et al., 2009) of the top 200 rivers (including the Congo, Mississippi, Yenisey, Paraná, Ganges, Columbia, Uruguay, and Niger) show statistically significant trends during 1948-2004, with the rivers having downward trends (45) outnumbering those with upward trends (19)... Comparisons with the CLM3 simulation suggest that direct human influence on annual streamflow is likely small compared with climatic forcing during 1948-2004 for most of the world's major rivers.
Warming Global Extreme Precipitation2013(Donat et al., 2013) in extreme precipitation are found, for example, for the number of heavy precipitation days (R10mm, Figure 8a) and the contribution from very wet days (R95pTOT, Figure 8b). Globally averaged, both indices display upward trends during the past 60 years. Similar patterns of change are also found for the average intensity of daily precipitation (Figure 8d)
Anthropogenic Global Allergies2004(Beggs, 2004) is now considerable evidence to suggest that climate change will have, and has already had, impacts on aeroallergens
Temporal Global Extreme Precipitation2002(Frich et al., 2002) new global dataset of derived indicators has been compiled to clarify whether frequency and/or severity of climatic extremes changed during the second half of the 20th century...significant increases have been seen in the extreme amount derived from wet spells and number of heavy rainfall events
Warming Atlantic Ocean Hurricanes2008(Elsner et al., 2008) tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere...We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 +/- 0.09 m s-1 yr-1 (s.e.) for the strongest cyclones.
Temporal Global Extratropical Cyclones2002(Paciorek et al., 2002) averages for large sectors of the hemisphere provide some evidence for increases in storm activity and forcing, but results vary by region and decade. The number of cyclones does not appear to be increasing, but there is evidence for an increase in intense cyclones.
Temporal Atlantic Ocean Hurricanes2008(Kossin, 2008) trends in the annual distribution of North Atlantic tropical storm formation...during the period 1851-2007...A consistent signal emerged that suggests the season has become longer as the earliest formation dates of the season have become earlier and the latest dates have become later.
Anthropogenic Global Floods2002(Milly et al., 2002) find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
Warming Global Extreme Precipitation2009(Höppe and Grimm, 2009) the world...natural catastrophes have increased dramatically and are causing more and more damage...The upward trend in numbers of natural catastrophes is mainly due to weather-related events such as windstorms and floods...there is some justification for assuming that this trend is the result of changes in the atmosphere, most probably global warming.
Temporal Western North Pacific Hurricanes2018(Tu et al., 2018) destructive potential of TCs has a considerable increasing trend from 1998 to 2016 (the P2 period), mainly contributed by the average intensity of TCs
Temporal Global Drought2014(Damberg and AghaKouchak, 2014) paper analyzes changes in areas under droughts over the past three decades...based on satellite gauge-adjusted precipitation observations...we show that several regions, such as the southwestern United States, Texas, parts of the Amazon, the Horn of Africa, northern India, and parts of the Mediterranean region, exhibit a significant drying trend.
Warming Global Desertification2013(Feng and Fu, 2013) analyzing observations for 1948-2008...we show that global drylands have expanded in the last sixty years
Temporal Global Desertification2014(Spinoni et al., 2014) couple the information obtained from the Koppen-Geiger (KG) climate classification and the FAO aridity index (AI), providing an overview of the most evident global changes in climate regimes from 1951-1980 to 1981-2010...Both KG and AI show that the arid areas globally increased between 1951-1980 and 1981-2010...North-Eastern Brazil, Southern Argentina, the Sahel, Zambia and Zimbabwe, the Mediterranean area, North-Eastern China and Sub-Himalayan India have been identified as areas with a significant increase of drylands extent.
Anthropogenic Global Desertification 2015(Chan and Wu, 2015) 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950-2010 and significant changes include expansion of arid and high-latitude continental climate zones.
Temporal Global Desertification 2013(Chen and Chen, 2013) is concluded that the most significant change over 1901-2010 is a distinct areal increase of the dry climate...since the 1980s.
Temporal Global Drought2017(Dai and Zhao 2017) precipitation and streamflow data and the self-calibrated PDSI_pm all show consistent drying during 1950-2012 over most Africa, East and South Asia, southern Europe, eastern Australia, and many parts of the Americas.
Warming Global Extreme Precipitation2015(Fischer and Knutti 2015) show that at the present-day warming of 0.85 C about 18% of the moderate daily precipitation extremes over land are attributable to the observed temperature increase since pre-industrial times
Temporal Global Extreme Precipitation2015(Lehmann et al. 2015) present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 % more record-breaking rainfall events over 1981-2010 compared to those expected in stationary time series.
Temporal Global Crops2016(Lesk et al., 2016) we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%...Furthermore, the results highlight ~7% greater production damage from more recent droughts.
Temporal Global Heat Waves2015(Mishra et al. 2015; ) observed station data for 217 urban areas across the globe, we show that these urban areas have experienced significant increases (p-value <0.05) in the number of heat waves during the period 1973-2012.
Temporal Global Drought2018(Pan et al., 2018) vegetation trends during the period 1982-2013...A >60% increase in browning area was found during the study period, and the results consistently indicate that the expansion of browning trends has accelerated since 1994.
Warming Global Drought2019(Spinoni et al., 2019) constructed a database of meteorological drought events from 1951 to 2016...Over North America, central Europe, central Asia, and Australia, the recent progressive temperature increase outbalanced the increase in precipitation causing more frequent and severe droughts.
Warming Global Violence2013(Hsiang et al., 2013) meta-analysis of studies that examine populations in the post-1950 era suggests that the magnitude of climate's influence on modern conflict is both substantial and highly statistically significant (P < 0.001). Each 1-SD change in climate toward warmer temperatures or more extreme rainfall increases the frequency of interpersonal violence by 4% and intergroup conflict by 14% (median estimates).
Temporal Global Violence2016(Schleussner et al., 2016) on data on armed-conflict outbreaks and climate-related natural disasters for the period 1980-2010. Globally, we find a coincidence rate of 9% regarding armed-conflict outbreak and disaster occurrence such as heat waves or droughts. Our analysis also reveals that, during the period in question, about 23% of conflict outbreaks in ethnically highly fractionalized countries robustly coincide with climatic calamities.
Warming Global Heat Waves2013(Coumou et al., 2013), the number of local record-breaking monthly temperature extremes is now on average five times larger than expected in a climate with no long-term warming...Summertime records, which are associated with prolonged heat waves, increased by more than a factor of ten in some continental regions including parts of Europe, Africa, southern Asia and Amazonia.
Anthropogenic Global Drought1998(Dai et al., 1998) the late 1970s, however, there have been some increases in the combined percentage areas in severe drought and severe moisture surplus, resulting from increases in either the drought area (e.g., over the Sahel, eastern Asia and southern Africa) or both the drought and wet areas (e.g., over the U.S. and Europe)...These changes are qualitatively consistent with those expected from increased greenhouse gases in the atmosphere.
Anthropogenic Global Drought2004(Dai et al., 2004), the global land areas in either very dry or very wet conditions have increased from -0% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.
Temporal Global Floods2002(Milly et al., 2002) both streamflow measurements and numerical simulations...We find that the frequency of great floods increased substantially during the twentieth century.
Temporal Global Fires2015(Jolly et al., 2015) 1979 to 2013...we show that fire weather seasons have lengthened across 29.6 million km^2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length...and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period.
Temporal Global Heat Waves2014(Russo et al., 2014) show that the percentage of global area affected by heat waves has increased in recent decades...In the 11 years between 2002 and 2012, the percentage of global area affected by moderate (HWMI >=2), severe (HWMI >=3), and extreme (HWMI >=4) heat waves was threefold greater than in the previous periods (1980-1990 and 1991-2001)
Anthropogenic Northern Hemisphere Extreme Precipitation2011(Min, 2011) we show that human-induced increases in greenhouse gases have contributed to the observed intensification of heavy precipitation events found over approximately two-thirds of data-covered parts of Northern Hemisphere land areas.
Warming Tropics Extreme Precipitation2010(Allan et al., 2010) changes in tropical precipitation from satellite data and climate models are assessed...The Special Sensor Microwave Imager data indicate an increased frequency of the heaviest events with warming.
Anthropogenic Atlantic Ocean Hurricanes2019(Bhatia et al., 2019), we utilize two observational datasets to calculate 24-hour wind speed changes over the period 1982-2009...our results suggest a detectable increase of Atlantic intensification rates with a positive contribution from anthropogenic forcing.
Warming Global Crops2019(Ray et al., 2019) statistics were compiled from 1974-2013 for ten crops across ~20,000 political units globally...this is the first observational global study reporting the impact of current climate change on the yields of the top ten global crops...among the top three global cereals, recent yields have decreased for rice (-0.3% or ~-1.6 million tons (MT) annually) and wheat (-0.9% or ~-5.0 MT annually)...we found that crop yields across Europe, Sub-Saharan Africa and Australia had in general decreased because of climate change, though exceptions are present. Similar variations are seen in other crops and regions all over the world...recent climate change has likely reduced overall consumable food calories in these ten crops by ~1%.
Warming Global Drought2019(Peng et al., 2019) the late 1940s, drylands have increased at a rate of 512,180 km2/decade. The main feature is the sharp jump in drylands expansion in the 1980s, with the area of drylands increasing 3.1% (1.90 x 106km2) between 1980 and 2008 compared to 1948-1979...rapid warming since the 1980s has become an increasing important cause of the recent global drying trend.
Temporal Global Extreme Precipitation2019(Papalexiou and Montanari, 2019) we perform a global analysis of 8,730 daily precipitation records focusing on the 1964-2013 period when the global warming accelerates...globally, over the last decade of the studied period we find 7% more extreme events than the expected number.
Warming Global Drought2020(Zhang et al., 2020) 1980-2010, due to significant global warming (0.30 C decade -1) the global mean occurrence frequency of [short-term concurrent hot and dry extreme events] has a slightly increasing trend (0.34% decade -1)
Anthropogenic Global Extreme Precipitation2013(Zhang et al., 2013) study provides estimates of the human contribution to the observed widespread intensification of precipitation extremes...over the Northern Hemisphere land area for 1951-2005...the effect of anthropogenic forcings can be detected in extreme precipitation observations. We estimate that human influence has intensified annual maximum 1 day precipitation in sampled Northern Hemisphere locations by 3.3%.
Warming Global Fisheries2020(Boyce, Lewis and Worm, 2010) account for approximately half the production of organic matter on Earth. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of ?1% of the global median per year...long-term declining trends are related to increasing sea surface temperatures.
Warming Global Hurricanes2020(Kossin et al., 2020) the homogenized global TC intensity record is extended to the 39-y period 1979-2017, and statistically significant (at the 95% confidence level) increases are identified. Increases and trends are found in the exceedance probability and proportion of major (Saffir-Simpson categories 3 to 5) TC intensities ... Between the early and latter halves of the time period, the major TC exceedance probability increases by about 8% per decade
Warming Global Hurricanes2020(Elsner, 2020) strongest tropical cyclones have continued to get stronger...Here I show that this is the case with increases in the upper quantile intensities of global tropical cyclones amounting to between 3.5 and 4.5% in the period 2007-2019 relative to the earlier base period (1981-2006)
Warming Global Heat Waves2020(Raymond et al., 2020) comprehensive evaluation of weather station data shows that some coastal subtropical locations have already reported a TW of 35 C and that extreme humid heat overall has more than doubled in frequency since 1979
Warming Global Heat Waves2020(Li et al., 2020) historical ~1 C of global-mean surface air temperature increase above preindustrial levels has already increased the population annually exposed to at least one day with wet bulb globe temperature exceeding 33 C (the reference safety value for humans at rest per the ISO-7243 standard) from 97 million to 275 million.
Anthropogenic Global Extreme Precipitation2020(Paik et al., 2020) 1951-2015...anthropogenic greenhouse gas influence is robustly detected in the observed intensification of extreme precipitation over the global land and most of the sub?regions considered
Temporal Africa Crops2014(Shi and Tao, 2014) of maize yields and climate variables in the maize growing seasons were used to assess the vulnerability of African maize yields to climate change and variability with different levels of management at country scale between 1961 and 2010...the negative impacts of increasing temperature and decreasing precipitation and SPEI on maize yields progressively increased at the whole continent scale over the time period studied.
Warming Global Heat Waves2017(Diffenbaugh et al., 2017) find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area...79% of the observed area exhibits a statistically significant trend in peak summer monthly temperature.
Anthropogenic Global Heat Waves2016(Knutson & Ploshay, 2016) a heat stress metric we use a simplified wet bulb globe temperature (WBGT) index...our analysis suggests that there has been a detectable anthropogenic increase in mean summertime heat stress since 1973, both globally and in most land regions analyzed.
Anthropogenic Global Hurricanes2019(Knutson et al., 2019) balance of evidence suggests detectable anthropogenic contributions to...increased global average intensity of the strongest TCs since early 1980s, increase in global proportion of TCs reaching category 4 or 5 intensity in recent decades.
Warming Global Extreme Precipitation2016(Donat et al., 2016) we investigate changes in these two aspects in the world?s dry and wet regions using observations and global climate models...extreme daily precipitation averaged over both dry and wet regimes shows robust increases...this intensification has implications for the risk of flooding as the climate warms, particularly for the world?s dry regions.
Warming Global Hurricanes2016(Xu et al., 2016) empirical relationship between sea surface temperature (SST) and the maximum potential intensification rate (MPIR) of tropical cyclones (TCs) over the North Atlantic has been developed based on the best-track TC data and the observed SST during 1988-2014...results from this study show a nonlinear increasing trend of the MPIR with increasing SST.
Warming Global Hurricanes2015(Fraza & Elsner, 2015) climatic influence of sea-surface temperature (SST) on intensification is examined for North Atlantic hurricanes by averaging hourly intensity increases from best-track data over the period 1986-2013...on average, mean intensification increases by 16% [(9, 20)% uncertainty interval] for every 1 C increase in mean SST.
Temporal Global Hurricanes2013(Kossin et al., 2013) create a more temporally consistent record of tropical cyclone intensity within the period trends deduced using quantile regression are shown. In the best track, the trend in the mean lifetime maximum intensity is about +2 m s?1 decade?1 and is statistically significant.
Warming Global Hurricanes2015(Kang & Elsner, 2015) calculate an average increase in global tropical cyclone intensity of 1.3 m s-1?over the past 30 years of ocean warming occurring at the expense of 6.1 tropical cyclones?worldwide.
Warming Global Hurricanes2012(Kishtawal et al., 2012) all the basins, the rate of Tropical Cyclone intensification from 64 kt to first peak of intensity maxima (global average value = 104 kt) was found to be positive...the trends indicate that the TCs now intensify from 64 kt to 104 kt nearly 9 hours earlier than they did 25 years back...increasing TC intensification may partly be attributed to the rate of ocean warming at different basins.
Warming Pacific Ocean Hurricanes2016(Mei & Xie, 2016) the past 37 years, typhoons that strike East and Southeast Asia have intensified by 12-15%, with the proportion of storms of categories 4 and 5 having doubled or even tripled...we find that the increased intensity of landfalling typhoons is due to strengthened intensification rates, which in turn are tied to locally enhanced ocean surface warming on the rim of East and Southeast Asia.
Temporal Pacific Ocean Hurricanes2012(Kang & Elsner, 2012) consensus of TC trends between the two agencies over the period is interpreted as fewer but stronger events since 1984, even with the lower power dissipation index (PDI) in the western North Pacific in recent years.
Warming Global Extreme Precipitation2008(Trenberth, 2008) is a direct influence of global warming on changes in precipitation and heavy rains...globally averaged over the land area with sufficient data, the percentage contribution to total annual precipitation from very wet days (upper 5%) has increased in the past 50 years.
Warming Global Hurricanes2010(Menendez & Woodworth, 2010) sea level (MSL) has generally increased worldwide during the 20th century due to the thermal expansion of sea water, the melting of ice sheets and glaciers, and the hydrological exchanges between the land and the ocean...there has indeed been an increase in extreme high water levels worldwide since 1970...results show that the MSL rise is the major reason for the rise in extreme high water at most stations.